

Table of Contents

ABSTRACT.. 1

PHSYICAL BLINDS CONSTRUCTION.. 1

HARDWARE OVERVIEW... 5

CIRCUITRY COMPONENTS... 7

SOFTWARE OVERWIEW.. 9

SOFTWARE LISTING .. 13

TESTING.. 21

PROBLEMS AND SOLUTIONS .. 22

CONCLUSION... 24

CIRCUIT SCHEMATICS .. 25

COMPLETE PARTS LIST AND BUDGET.. 30

APPENDIX
 A - Proposal
 B – Parts Specification

 1

ABSTRACT

The project is to design and construct horizontal blinds that will open, close, raise

and lower depending on the buttons pressed on a numeric keypad. The movements of the
blinds will be performed by stepper motors driven by a 68HC711D3 microprocessor. In
addition, the blinds will also have an automated option such that the blinds will open and
then be raised or lower and then be closed depending on the nearby light measured by a
phototransistor.

PHSYICAL BLINDS CONSTRUCTION

Parts List
• Wood • 2 Motors
• JB Weld • 1 Lever Switch
• (6) 3/8” x 2” hangar bolts • 1 Toggle Switch
• (18) 3/8” wing nuts • (6) 3/8” x 2” bolts

Figure 1 - Basic components of blinds

Table 1 - Wood Pieces and Dimensions

Component Piece Dimensions Number of Pieces Function
A 1" x 4" x 15" 1 Blind Attachment Point

B, C 1" x 4" x 15" 2 Window Sills
D, E 1" x 4" x 27" 2 Arms
F, G 1" x 4" x 11" 2 Feet

 2

Basic Assembly Procedures

To be able to store our project in our tub, it was designed to be easily collapsible.
This was accomplished by using bolts and hangar bolts (one threaded end and one bolt
end) in conjunction with wing nuts.

First, a rough sketch of the windowsill was done. Then one 5’ board of 1” x 4”
wood was purchased and cut to the above dimensions. Part A had two holes drilled
toward one end on both sides, to ensure half of the board would sit above the arms (D and
E). This was to ensure that our motors would have enough clearance above the arms to
operate properly. Two hangar bolts were then drilled into the holes, leaving a threaded
end exposed.

Parts B and C were also pre-drilled, but these holes were placed 1 inch apart.
Two more hangar bolts were then installed on each end.

Parts F and G were cut to length and three holes were drilled in a triangular
pattern, to increase stability. Three 3/8” x 2” bolts were then fitted through these parts
and parts D and E.

Parts D and E, the arms, were cut to the specified dimensions and predrilled to
correspond with the preexisting hangar bolts and bolts. To join our windowsill together,
all bolts where slid through the arms and were attached with the wing nuts.

Figure 2 - Picture of front view of blinds

 3

Figure 3 - Picture of back view of blinds

Figure 4 - Picture of automation switch

 4

Figure 5 - Picture of windowsill switch

Figure 6 - Picture of Open/Close motor connection

 5

Figure 7 - Picture of Raise/Lower motor connection

HARDWARE OVERVIEW

The Motors
 Two identical bipolar motors were used to move the horizontal blinds. One motor
was used to open and close the blinds and the other was used to raise and lower the
blinds. The important characteristics of each motor are that its holding torque is high,
33.5oz per inch, and in order to operate the motor must be powered by 5V DC and 1A of
current. In order to provide such a high current and to pulse the motors to rotate in
forward or reverse, an H-bridge was attached to each coil of the motor, see Figure 10.
The H-bridge passed current through the coils of the motor. The direction of the current,
which also determined the rotation of the motor, was specified by the H-bridge control
inputs A and B. Diodes were also connected to the H-bridge to prevent back EMF
current, which could damage the hardware components.

Keypad
 The keypad was the control device that allowed the user to select which operation
to perform on the blinds. Four of the buttons were activated on the keypad and each
performed a unique operation. Button 1 opened the blinds, button 2 closed the blinds,
button 3 raised the blinds and button 4 lowered the blinds. The keypad pins were
connected to a 10-to-4 priority encoder whose outputs provided signals to PORTD of the
microprocessor, see Table 2.

 6

Table 2 – Keypad

10 to 4 Encoder

Outputs
 Ports

10 to 4 Encoder Inputs PD0 PD1 PD2 PD3

1 2 3 4 5 6 7 8 9 A B C D
PORTD
INPUT

0 1 1 1 1 1 1 1 1 0 1 1 1 00001110
1 0 1 1 1 1 1 1 1 1 0 1 1 00001101
1 1 0 1 1 1 1 1 1 0 0 1 1 00001100
1 1 1 0 1 1 1 1 1 1 1 0 1 00001011
1 1 1 1 1 1 1 1 1 1 1 1 1 00001111

Keypad Button Pushed - operation performed
1 - open blind
2 - close blind
3 - raise blind
A - lower blind

Windowsill Switch

A switch was attached to the bottom windowsill of the blinds. The purpose of this switch
was to detect whether or not the blinds were located at the bottom of the window. When the
switch was pressed, a high input was provided to PA0 of the microprocessor; otherwise the pin
received a low input.

Automation Switch

The automation switch was mounted on the front of the blinds and indicated
whether or not the blinds would be automated. When the switch was flipped down, the
automation option was considered off and pin PA1 of the microprocessor was provided
0V. When the switch was flipped up, the automation option was activated and PA1
received a high input of 5V. NOTE: Automation indicates that the movements of the
blinds would be determined by its surrounding light instead of the keypad buttons.

Phototransistor

The phototransistor was required for the automation of the blinds and was located
on the large circuit breadboard. The phototransistor always detected the light around its
surroundings. If it detected bright light, the phototransistor would conduct current. The
current was passed through a resistor, creating a voltage drop, and inputting a low signal
to pin PA2 of the microprocessor, see Figure 13. If the phototransistor detected little or
no light, no current was conducted and providing a high input to PA2. Though the
phototransistor always performed the operation, its effect on PA2 was only analyzed
when the automation switch was activated.

 7

CIRCUITRY COMPONENTS

More details can be found in Appendix B

55M048D Bipolar Stepper Motors

Brief Description: These motors provide very high holding torque, 33.5 oz per
inch. The motors require 5V DC and 1A from a power supply.

Application: one stepper motor was used to raise and lower the blinds, and the
other one was used to open and close the blinds.

SN75LS147 10-Line-to-4-Line Priority Encoder
 Brief Description: This component receives 10 inputs and specifies which input
is low by providing a 4-bit output. If more than one input is low, then the highest number
input gets priority.

Application: This component detected which keypad button was pressed, and
then provided the microcontroller a 4-bit representation of this information.

SN754410 Quadruple Half-H Driver
 Brief Description: This chip contains four half H-bridges that are capable of
driving 1 A to a load resistance.
 Application: Each pair of half bridges was connected to create a full H-bridge.
Then, the motor driver application schematic provided with the component was
implemented. The driver connected each coil of the bipolar motors to an H-bridge and
had two control inputs A and B. The inputs were pulsed in order to manipulate the
direction of the current through the coils. A clockwise rotation sequence is the following,
and by reversing its order a counterclockwise rotation is created:

Clockwise Rotation
A – 1 B – 1
A – 1 B – 0
A – 0 B – 0
A – 0 B – 1
A – 1 B – 1

1N4007 Diodes
 Brief Description: This component has high surge current capacity.
 Application: These diodes were connected to the motor driver in order to prevent
back EMF current ruining circuit components.

74HCT373 Octal D-type transparent latch
 Brief Description: This is a high-speed CMOS device that captures input when
latch enable receives a high, and stores the input when latch enable is low. When output
enable is low, the contents are available at the outputs.
 Application: The microprocessor was connected to the latch in order to transfer
and receive information. The 8 LSB of the microprocessor were connected to the input
and output lines of the latch. When the microprocessor wanted to read data from the
EPROM, the latch was provided the address from the microprocessor. Then the latch

 8

outputted to the EPROM specifying the address location to the EPROM. The EPROM’s
data would then be read by the microprocessor.

Am27256 EPROM
 Brief Description: 256 Kbit, ultraviolet erasable programmable read-only
memory. It is capable of holding 32K words.
 Application: This component contained the assembly program that was written to
implement the Automated Blinds Project.

Dm74LS00 Quad 2-Input NAND Gates
 Brief Description: This component contained 2-input NAND gates.
 Application: Used to enable the EPROM by NANDing the 15th address line and
the address strobe. In addition, it NANDed the E clock.

DM74LS244 Octal 3-State Buffer
 Brief Description: This component receive up to 8 inputs. It provides an output
with the same signal of the input but with a higher voltage and larger current.
SN74LS04 Hex Inverter

Brief Description: The component contained six inverters.
Application: This component received the input control signals for the motor

driver.

Motorola 69HC711D3 Microprocessor

Brief description: This device had a nominal bus speed of 2Mhz and contained an
8-bit CPU. There are 7 CPU registers available: two 8-bit accumulators, two 16-bit index
registers, a stack pointer, a program counter, and condition code register. The HC11 uses
a memory-mapped architecture, so I/O pins can be referenced by the 64-kilobyte memory
map.

Application: The device received inputs from the toggle switch, flip switch,
phototransistor, and the 10-to-4 line encoder. It also provided outputs for the motor
drivers.

16 Button Keypad
 Brief description: 4 x 4 matrix keypad.
 Application: Four buttons on the keypad were scanned in order for a user to
provide inputs to determine the operation to be performed on the blinds: open, close,
raise and lower the blinds.

IFD-5 Infrared Diode/Transistor
 Brief description: The transistor becomes active and conducts current when light
is detected, otherwise no current is conducted.
 Application: It was used to provide an input pin on the microprocessor with a low
or high signal depending on the amount of light detected.

 9

Toggle and Flip Switch
 Brief Description: The toggle switch had continuity between pin 1 and pin 2
when not pressed, and pin 1 and pin 3 when pressed. The flip switch simply connected
pin 1 and pin2 when the switch was flipped towards pin 1, otherwise they were separated.
 Application: The toggle switch was pressed by the blinds when they were
lowered all they way, in turn creating a high input to A0 of the microprocessor. The flip
switch would input a high signal to A1 when it was flipped towards pin 1, and indicated
whether or not to automate the blinds.

SOFTWARE OVERWIEW

Abstract View

 The abstract view of the program provides the general concept of the program
used to implement the Automated Blinds Project.

Automation
Switch is

on?

Initialization
Routine

Perform Stall

Keypad
button

pressed?
Perform user

selected action.

False
True

True False

 START

Automation
operation

performed?
True False

 10

Initialization Routine (initial)

 The initialization routine lowers the blinds to the very bottom of the window
when the circuit is turned on. It accomplishes this by analyzing the input of PA0. If PA0
is high, then the windowsill switch is pressed and the blinds are at the bottom of the
window. This means no actions on the blinds need to take place. Thus, register Y is set
to 0 to indicate the bottom location of the window, and then a Stall Routine is performed.
On the other hand, if PA0 is initially low, then the blinds will be lowered the same height
as one press of the button L on the keypad would perform. Then, the input of PA0 will
be checked again. The lowering continues until PA0 is high, which indicates the blinds
have been lowered all the way—again when a high is read, register Y will be set to 0 and
a Stall Routine is performed.

Stall Routine (stall)

 The Stall Routine performs a stall by performing 4095 nop commands. This takes
place to prevent any motor from changing directions too quickly. Once the nop
commands have been performed, the Automation Switch Routine is performed.

Stall circuits from
reading inputs.

Automation Switch
Routine.

 START

Lower the blinds
for 3 turns of the

motor.

Perform Stall
Routine.

Windowsill
button is
pushed?

True False

 START

 11

Automation Switch Routine (within bcheck)

 The Automation Switch Routine checks whether or not the automation switch is
on, in turn determining whether or not to analyze the phototransistor readings. If the
automation switch is on, then the Photo Routine is performed, otherwise the Keypad
Routine is performed.

Photo Routine (photo)

 The Photo Routine determines which operations will be performed on the blinds
depending on the amount of light detected by the phototransistor. It accomplishes this by
analyzing the input of PA2. If PA2 is high, this indicates that the phototransistor is not

Keypad Routine Photo Routine Is the
automation
switch on?

True False

 START

The photo-
transistor
detects
light?

True False

 START

The
blinds are
lowered?

The
blinds are
raised?

Lower the
blinds to the
bottom, then
close the blinds.

Open the
blinds, then
raise them
to the top.

Automation Switch
Routine.

False
False

True
True

Stall Routine

 12

detecting much light. When there is little light, it is desired that the blinds are open and
raised. If register Y equals 12—indicating the blinds are at the top of the window—then
no action takes place on the blinds and the Automation Switch Routine is performed. If
register Y equals 0—an indication the blinds are at the bottom of the window—then two
actions take place. The blinds are opened and then the blinds are raised to the very top of
the window, then a Stall Routine takes place. On the other hand, if PA2 is low, this
indicates that the phototransistor is detecting a significant amount of light. When this
happens, it is desired that the blinds are closed and lowered. If register Y equals 12 then
two actions take place. The blinds are first lowered to the bottom of the window and then
they are opened, which is also followed by a Stall Routine. If register Y equals 0, then no
action takes place and the Automation Switch Routine is performed.

Keypad Routine (within bcheck)

The Keypad Routine checks for which button of the keypad was pushed. If the 1

button was pushed, then the open/close motor turns forward 3 full turns and then
performs a Stall Routine. If the 2 button was pushed, then the open/close motor turns
forward 3 full turns and then performs a Stall Routine. If the A button was pushed, then

 START

Perform Stall
Routine.

Which
keypad

button is
pushed?

Rotate Open/Close
motor forward 3 full

turns.
Button 1

Button 2

Button 3

Button A

Rotate Open/Close
motor reverse 3 full

turns.

Rotate Raise/Lower
motor forward 10

full turns.

Automation Switch
Routine.

Register Y
equals 12? True

False

Register
Y equals

0?
True False

Rotate Raise/Lower
motor reverse 10

full turns.

 13

the program checks if Register Y equals 0. If this is true, then the blinds are already at
the bottom of the window, so no action takes place and the Automation Switch Routine is
performed. Otherwise, the raise/lower motor turns forward 10 full turns and then
performs a Stall Routine. If the 3 button is pressed, then the program checks if Register
Y equals 12. If this is true, then the blinds are located at the top of the window, thus
nothing is performed on the blinds and the automatic Switch Routine is performed.
Otherwise, the raise/lower motor rotates in reverse for 10 full turns.

The code to implement the model was written in Assembly using TeXAS version
1.23. Given the hardware setup, the following Assembly code was able to implement the
Automated Blinds Project.

SOFTWARE LISTING

PORTA equ $0000 ; PORTA is an alias to the memory location $0000
PORTD equ $0008 ; PORTD is an alias to the memory location $0008
DDRD equ $0009 ; Data Direction Register for port D - alias to the
 ;memory location $0009
PACTL equ $0026 ; PACTL is an alias to the memory location $0026
CONFIG equ $003F ; define config register, contains watch dog timer at bit 3
Main org $F000 ; main program is stored starting from location $F000
 ldaa #$04 ; store 00000100 at location $003F to disable the
 staa CONFIG ; Watch Dog Timer
 ldaa #$30 ; store 00110000 at location $0009 to configure PD0, PD1, PD2,

PD3 as input
 staa DDRD ; and PD4, PD5 as outputs, 0 means input 1 means output
 ldaa #$88 ; assign PA7, PA3 as outputs, 1 means output, 10001000
 staa PACTL ;
 jmp initial ; go intialize blinds
intdoneldy #$00 ; use y register as counter for location of blinds, load with 0
 jmp stall ; stalls after initialize complete, then checks buttons
bcheck ldaa #$02 ; load 00000010 into accumulator, checks to see if automation is

switched on
 ldab PORTA
 andb #02 ; and with 00000010 to only evalute PA1
 CBA ; compare A to B, if equal then switch is turned on

beq photol ; branch to photo loop to determine whether or not to raise and
lower blinds

ldaa #$0F ; load 00001111 into accumulator, which represents no buttons are
being pressed

 ldab PORTD ; load data from PORTD into accumulator b
andb #$0F ; AND B with 00001111, to make zero all outputs but maintain all

input values
 CBA ; compare A to B

beq bcheck ; if A equals B, then it means there are no buttons being pressed,
branch to bcheck

 ldaa #$0E ; load 00001110 into accumulator, which represents "open blind"

 14

 ldab PORTD
andb #$0F ; and B with 00001111, to make zero all outputs but maintain all

input values
 CBA ; compare A to B
 beq open ; if they are equal, open button pushed and go to open loop
 ldaa #$0D ; load 00001101 into accumulator, which represents "close blind"
 ldab PORTD

andb #$0F ; and B with 00001111, to make zero all outputs but maintain all
input values

 CBA ; compare A to B
 beq close ; if they are equal, close button pushed and branch to close
 ldaa #$0C ; load 00001100 into accumulator, which represents "raise blind"
 ldab PORTD

andb #$0F ; and B with 00001111, to make zero all outputs but maintain all
input values

 CBA ; compare A to B
 beq raise ; if they are equal, raise button pushed and branch to raise
 ldaa #$0B ; load 00001011 into accumulator, which represents "lower blind"
 ldab PORTD

andb #$0F ; and B with 00001111, to make zero all outputs but maintain all
input values

 CBA ; compare A to B
 beq lower
 bra bcheck ; always go back to see what button is being pushed

photol jmp photo ; pc relative addressing range error, goes to photo

open jmp openl ; used because too long of a PC relative address to get to openl and

closel for BNE
close jmp closel

lowint ldab #$03 ; counter for total number of turns of stepper motor
reverse ldaa #$30 ; represents 00110000
 staa PORTD
 ldx #$2710 ;10000 decimal value
inner1 nop
 dex
 bne inner1
 ldaa #$20 ; next step, represents 00100000
 staa PORTD
 ldx #$2710
inner2 nop
 dex
 bne inner2
 ldaa #$00 ; next step, represents 00000000
 staa PORTD

 15

 ldx #$2710
inner3 nop
 dex
 bne inner3
 ldaa #$10 ; next step, represents 00010000
 staa PORTD
 ldx #$2710
inner4 nop
 dex
 bne inner4
 decb ; decrement b
 bne reverse ; keep doing loop until b is 0
 jmp initial ; go check if blinds are down yet

raise cpy #$000C ; make sure blinds aren't all the way raised, 12 times, if so check

for next button
 beq bcheck ;
 iny ; increment y because lowered blinds
 ldab #$0A ; use b as a counter, 10 turns of stepper motor
raiser ldaa #$30 ; represents 00110000
 staa PORTD
 ldx #$2710 ;10000 decimal value
raise1 nop
 dex
 bne raise1
 ldaa #$10 ; next step, represents 00010000
 staa PORTD
 ldx #$2710
raise2 nop
 dex
 bne raise2
 ldaa #$00 ; next step, represents 00000000
 staa PORTD
 ldx #$2710
raise3 nop
 dex
 bne raise3
 ldaa #$20 ; next step, represents 00100000
 staa PORTD
 ldx #$2710
raise4 nop
 dex
 bne raise4
 decb ; decrement b
 bne raiser ; keep doing loop until b is 0
 jmp stall ; go check next button being pushed

 16

lower cpy #$0000 ; make sure blinds aren't all the way down, if so check for next

button
 beq bcheckl ;
 dey ; decrement y because lowered blinds
 ldab #$0A ; use b as a counter, 10 turns of stepper motor
lowerr ldaa #$30 ; represents 00110000
 staa PORTD
 ldx #$2710 ;10000 decimal value
lower1 nop
 dex
 bne lower1
 ldaa #$20 ; next step, represents 00100000
 staa PORTD
 ldx #$2710
lower2 nop
 dex
 bne lower2
 ldaa #$00 ; next step, represents 00000000
 staa PORTD
 ldx #$2710
lower3 nop
 dex
 bne lower3
 ldaa #$10 ; ext step, represents 00010000
 staa PORTD
 ldx #$2710
lower4 nop
 dex
 bne lower4
 decb ; decrement b
 bne lowerr ; keep doing loop until b is 0
 jmp stall ; go check next button being pushed

openl ldab #$03 ; use b as a counter, 3 turns of stepper motor
openr ldaa #$88 ; represents 10001000
 staa PORTA
 ldx #$2710 ;10000 decimal value
open1 nop
 dex
 bne open1
 ldaa #$08 ; next step, represents 00001000
 staa PORTA
 ldx #$2710
open2 nop
 dex

 17

 bne open2
 ldaa #$00 ; next step, represents 00000000
 staa PORTA
 ldx #$2710
open3 nop
 dex
 bne open3
 ldaa #$80 ; next step, represents 10000000
 staa PORTA
 ldx #$2710
open4 nop
 dex
 bne open4
 decb ; decrement b
 bne openr ; keep doing loop until b is 0
 jmp stall ; go check next button being pushed

bcheckl jmp bcheck ; just for lower, so it will go to bcheck, not enough address space

closel ldab #$03 ; use b as a counter, 3 turns of stepper motor
closer ldaa #$88 ; represents 10001000
 staa PORTA
 ldx #$2710 ;10000 decimal value
close1 nop
 dex
 bne close1
 ldaa #$80 ; next step, represents 10000000
 staa PORTA
 ldx #$2710
close2 nop
 dex
 bne close2
 ldaa #$00 ; next step, represents 00000000
 staa PORTA
 ldx #$2710
close3 nop
 dex
 bne close3
 ldaa #$08 ; next step, represents 00001000
 staa PORTA
 ldx #$2710
close4 nop
 dex
 bne close4
 decb ; decrement b
 bne closer ; keep doing loop until b is 0

 18

 jmp stall ; go check if blinds are down yet

bcheck2 jmp bcheck ; for phototransistor branches

stall ldx #$0FFF ; decimal value 4095
stalli nop
 dex
 bne stalli
 jmp bcheck ; stall completed, go check next button being pushed

lowintl jmp lowint ; jumps to low int, because of PC relative problem

initial ldaa PORTA ; load porta to check if blinds are down
 anda #$01 ; and with 00000001 to maintain only PA0 input
 ldab #$00 ; load b with 00000000
 CBA ; compare A with B
 beq lowintl ; if they are equal then blinds aren't lowered
 jmp intdone ; otherwise blind is initialized

photo ldaa #$04 ; 00000100 to see if PA2 is high (which means no light) and open

and raise blinds
 ldab PORTA ;
 andb #$04 ; AND accumulator B with 00000100 to only maintain PA2 input
 CBA ;
 beq photonl ; they are equal, no light, go open and raise blinds
 cpy #$0000 ; compare y to 0

beq bcheckl ; if they are equal, blinds are lowered all the way, so don't do
anything

ldab #$80 ; use b as a counter, 10 turns of stepper motor * 13 loops = 130
(should be 82)

 ldy #$0000 ; this ensures that it will know it's at the bottom after it has lowered
plowr ldaa #$30 ; represents 00110000
 staa PORTD
 ldx #$2710 ;10000 decimal value
plowr1 nop
 dex
 bne plowr1
 ldaa #$20 ; next step, represents 00100000
 staa PORTD
 ldx #$2710
plowr2 nop
 dex
 bne plowr2
 ldaa #$00 ; next step, represents 00000000
 staa PORTD
 ldx #$2710

 19

plowr3 nop
 dex
 bne plowr3
 ldaa #$10 ; next step, represents 00010000
 staa PORTD
 ldx #$2710
plowr4 nop
 dex
 bne plowr4
 decb ; decrement b
 bne plowr ; keep doing loop until b is 0
 ldx #$0FFF ; for waste
waste2 nop ; kill some time
 dex ;
 bne waste2 ; branch to waste2
 ldab #$08 ; use b as a counter, 3*4 = 12 turns of stepper motor, 8 is good
pcloser ldaa #$88 ; represents 10001000
 staa PORTA
 ldx #$2710 ;10000 decimal value
pclose1 nop
 dex
 bne pclose1
 ldaa #$80 ; next step, represents 10000000
 staa PORTA
 ldx #$2710
pclose2 nop
 dex
 bne pclose2
 ldaa #$00 ; next step, represents 00000000
 staa PORTA
 ldx #$2710
pclose3 nop
 dex
 bne pclose3
 ldaa #$08 ; next step, represents 00001000
 staa PORTA
 ldx #$2710
pclose4 nop
 dex
 bne pclose4
 decb ; decrement b
 bne pcloser ; keep doing loop until b is 0
 jmp stall ; always stall

bcheck3 jmp bcheck

 20

photonl cpy #$000C ; compare y to12, the ceiling of the blinds height
 beq bcheck3 ; equal, so don't raise blinds jump to bcheck3, which goes to
bcheck
 ldy #$000C ; load y with C now, to show it's going to the top
popenl ldab #$08 ; use b as a counter, 12 turns of stepper motor (3 turns * 4 times)

(8 for now)
popenr ldaa #$88 ; represents 10001000
 staa PORTA
 ldx #$2710 ;10000 decimal value
popen1 nop
 dex
 bne popen1
 ldaa #$08 ; next step, represents 00001000
 staa PORTA
 ldx #$2710
popen2 nop
 dex
 bne popen2
 ldaa #$00 ; next step, represents 00000000
 staa PORTA
 ldx #$2710
popen3 nop
 dex
 bne popen3
 ldaa #$80 ; next step, represents 10000000
 staa PORTA
 ldx #$2710
popen4 nop
 dex
 bne popen4
 decb ; decrement b
 bne popenr ; keep doing loop until b is 0
 ldx #$0FFF
waste nop ; kill some time
 dex ;
 bne waste ; branch to waste
 ldab #$80 ; use b as a counter, 10 turns of stepper motor * 13 loops = 130

(should be 82)
praiser ldaa #$30 ; represents 00110000
 staa PORTD
 ldx #$2710 ;10000 decimal value
praise1 nop
 dex
 bne praise1
 ldaa #$10 ; next step, represents 00010000
 staa PORTD

 21

 ldx #$2710
praise2 nop
 dex
 bne praise2
 ldaa #$00 ; next step, represents 00000000
 staa PORTD
 ldx #$2710
praise3 nop
 dex
 bne praise3
 ldaa #$20 ; next step, represents 00100000
 staa PORTD
 ldx #$2710
praise4 nop
 dex
 bne praise4
 decb ; decrement b
 bne praiser ; keep doing loop until b is 0
 jmp stall ; go check next button being pushed
 jmp bcheck ; repeat the process forever
 org $FFFE ; point the PC to location FFFE and store the Main
 dc.w Main ; program Address
 end ; when 6811 resets, it points to FFFE and replaces the
 ;current value of PC with the contents at location FFFE &FFFF

TESTING

 Testing was a critical factor to the success of the Blinds Project. Physical
materials, hardware circuits and software were all tested and retested to make certain the
blinds project would perform as desired.

Physical Blinds Testing
 Once the blinds were constructed, only testing whether or not the raise/lower
motor would be able to support the weight of the blinds was tested. This was done by
simply tying the strings of the blinds to the shaft of the motor. Then, the motor was
rotated until the blinds reached the top of the window; a position where the greatest
amount of torque was required. Luckily, the motor was able to support the weight and
there were no more tests needed.

Hardware Circuits Testing
 The entire circuit created for the Blinds Project was built by attaching
subcomponents individually. The major components were the motor driver, keypad,
windowsill switch, phototransistor and automation switch. First, the keypad was
constructed and attached to the circuit. To verify that it was built correctly, LED’s were
attached to the pins that would eventually be attached to the motor driver control inputs.
Then, each activated button was pushed to see if it caused the LED’s to flash, which

 22

verifies a correct response to the keypad input. Next, the two motor drivers were built.
The motor drivers were tested by attaching a motor to each one. Then, the motor driver
inputs were pulsed in sequences by hand by plugging them in and out of 5V and ground.
The motor rotated in the correct direction, and was deemed ready. The windowsill switch
was also tested before being attached to the circuit. To verify that it worked, a DMM was
used to measure the voltage from pin 2 of the toggle switch. Pin 2 showed a reading of
5V when the switch was pressed and 0V otherwise, thus it was verified as working. A
DMM was also used to test if the phototransistor circuit was working correctly. When
the phototransistor detected light, a 2.5 voltage drop was measured across the resistor.
When the phototransistor didn’t detect light, no voltage drop occurred across the resistor
and the phototransistor circuit was considered working. Finally, the automation switch
was tested and attached to the entire circuit. A DMM was used to measure the voltage at
pin 2 of the switch. 5 V was measured at pin 2 when the switch was on and 0V
otherwise, thus it was constructed correctly. By verifying the subcomponents
individually before attaching them, the cause of hardware circuit errors were easier to
discover and much easier to rectify.

Software Testing
 The assembly code was written and tested using TExaS Version 1.23.
Throughout the process of creating the blinds, the assembly code was revised various
times to accomplish the project goals. However, upon completion of each revision, the
assembly was simulated and tested within TExaS. With TExaS, it was possible to attach
I/O devices to specified ports of a simulated 68HC711D3 microprocessor in order to
reflect the actions and response of hardware. To analyze if the motor driver inputs were
receiving the correct pulse sequence, LED’s were attached to the appropriate simulated
pins. When the LED lit up, it was known that a high output was provided from that pin,
when the LED was off, it was known that a low output was provided. To analyze if the
microprocessor responded correctly to keypad inputs, switches were attached to the
appropriate simulated pins. When the switch was closed, it was known the pin read a
high input value, when the switch was open it was known the pin read a low input value.
Overall, the simulator provided an efficient way to test the software and saved a lot of
frustrating lab time.

PROBLEMS AND SOLUTIONS
Construction Problems
Windowsill switch

1. Problem: The contact between the blinds and the windowsill switch was not
always detected during the initialization sequence. Due to this, the blinds would
raise after passing the bottom of the window because the raise/lower motor would
continue to rotate in reverse. The contact wasn’t always recognized for two
reasons. First, the blinds could not balance on top of the small surface area of the
switch, thus requiring the software to check the switch at the exact moment the
blinds hit the switch. Second, the blinds were lowered in large increments only
permitting a small frequency for the switch to be checked.
Solution: A large plate was connected to the windowsill switch in order to create
a larger surface for the blinds to contact and remain balanced upon. Also, the

 23

lowering of the blinds was performed in smaller increments, increasing the
frequency that the switch was checked.

Open/Close motor connection

2. Problem: The connection between the shaft of the motor and the rod that opened
and closed the blinds wasn’t centered and wouldn’t turn. At first, the connection
between the shaft of the open/close motor and the rod consisted of two, different
sized diameter, hollow, aluminum poles. One end of the smaller aluminum pole
was attached to the shaft of the open/close motor and the other end was JB welded
inside a larger aluminum pole. The other end of the larger aluminum pole was
clamped onto the rod which turned to open/close the blinds. However, the small
aluminum pole wasn’t centered within the larger aluminum pole, causing the rod
not to turn correctly.
Solution: A plastic ribbed anchor was used with only the small aluminum pole to
connect the motor shaft to the rod. The larger aluminum pole was eliminated
because it just caused more problems. A longer piece of the smaller aluminum
pole was attached to the motor shaft. A plastic ribbed anchor was screwed into
the other end of the aluminum pole. The ribbing on the anchor ensured that the
pole and the anchor turned in unison. The other end of the anchor contained a
center hole, usually used for a screw. Since this hole was centered, the rod was
jammed into the hole without any worry of it not turning correctly.

 Raise/Lower motor connection
3. Problem: The blinds did not always rise evenly because of the connection

between the strings that raised the blinds and the raise/lower motor shaft. This
was caused for two main reasons. First, after attaching the strings to the motor
shaft, there wasn’t a smooth surface for the strings to wind around. However, a
smooth surface is required so that the strings wrap around the same size
circumference, in turn raising the blinds evenly. The second obstacle was that the
strings didn’t always wrap around symmetrically on the motor shaft, again,
preventing an even rise of the blinds.
Solution: The strings were attached to the motor shaft using electrical tape.
Then, a larger hollow aluminum pole slid over the strings and electrical tape to
provide a smooth surface for the strings to wind around. Also, a small, angled,
metallic plate split the center of the aluminum pole to maintain symmetric
winding of the strings. In other words, the metallic obstruction prevented the
strings from crossing the center of the aluminum pole.

Circuit Problems
Current supply for bipolar motors
1. Problem: When purchasing the bipolar motors, only the holding torque

specification was considered. It was discovered later that each bipolar motor
requires 1 A of current, however, an H-Bridge that provides such a high load current
is difficult to find.
Solution: The SN754410 quad half-bridge chip was found on the Internet and
purchased. This chip provides a load current of 1A.

 24

Output signals not recognized from microprocessor
2. Problem: The control inputs for the SN754410 circuit from the 68HC711D3

microprocessor weren’t recognized.
Solution: It was discovered that the output signals from the microprocessor weren’t
strong enough for the hex inverter to detect. Therefore, the output signals passed
through a DM74LS244 Octal 3-state Buffer before going into the hex inverter.

Not enough voltage and current applied to motor drivers
3. Problem: The bipolar motors did not have enough torque while raising the blinds.

Solution: A separate power supply was needed for each motor driver in order to
provide sufficient current and voltage for the SN754410 circuits.

Common ground wasn’t implemented
4. Problem: The bipolar motor did not turn correctly, even though the correct input

sequence to controls A and B of the motor driver was applied.
Solution: A common ground for the entire circuit was created. Earlier, each motor
driver had its own power supply and its own ground, and this was the source of the
problem.

CONCLUSION

 All of the goals for this project were accomplished, including the optional
automation of the blinds. A user was able to open, close, raise or lower the blinds by
pushing unique buttons on a keypad. A toggle switch on the bottom of the windowsill
allowed the location of the blinds to be tracked in order to prevent trying to raise or lower
the blinds too much. Furthermore, by flipping a switch mounted on the blinds, the blinds
became automated and would lower and close or open and rise depending on the amount
of surrounding light. The keypad, bipolar motors, switches and phototransistor
successfully communicated with the 68HC711D3 microprocessor to fulfill the goals of
this project. Even though the Automated Blinds Project did require an abundant amount
of lab time and troubleshooting, the project’s eventual success was extremely gratifying.
Each group member feels as though they have learned a tremendous amount about the
demanding process of creating a project.

 25

CIRCUIT SCHEMATICS

Figure 8 – Main Board Schematic

 26

Figure 9 – Picture of main board

 27

Figure 10 – Schematic of motor drivers

 28

Figure 11 – Picture of motor drivers

 29

Figure 12 – Schematic of keypad

 30

 Phototransistor circuit Automation Switch Windowsill Toggle
Switch

Figure 13 – Schematics of switches and phototransistor

COMPLETE PARTS LIST AND BUDGET

Part Name Part Number Quantity Cost Location
Microcontroller 68HC711D3 1 Free ECE Stockroom

EPROM Am27C256 1 Free ECE Stockroom
Quad 2-Input NAND Gate DM74LS00 1 Free ECE Stockroom

8 MHz Clock -- 1 Free ECE Stockroom
Diode 1N4007 16 Free ECE Stockroom

Hex Inverter SN74LS04 2 Free ECE Stockroom
Octal 3-state Buffer DM74LS244 1 Free ECE Stockroom

10-line to-4 line Encoder SN74LS147 1 Free ECE Stockroom
Octal D-type Latch 74HC373 1 Free ECE Stockroom

Undervoltage Sensing Circuit MC34064 1 Free ECE Stockroom
Micropower Undervoltage

 Sensing Circuit MC34164 1 Free ECE Stockroom

Reset Switch SW1 1 Free ECE Stockroom
Numeric Keypad Free ECE Stockroom
Photo Transistor IFD-5 1 Free ECE Stockroom

Undervoltage circuit MC34064 1 Free ECE Stockroom
Micropower undervotlage circuit MC34164 1 Free ECE Stockroom

Capacitors Various Several Free ECE Stockroom
Resistors Various Several Free ECE Stockroom

Wires Various Several Free ECE Stockroom
Plastic Ribbed Anchor -- 1 Free ACE Hardware

Spray Paint -- 1 can Free Leftover paint
Bipolar Stepper Motor 55M048D1B 2 $36.00 Digikey.com
Quad Half H-Driver SN754410 2 $5.40 Digikey.com

Lightweight Blinds, Hardware for
window frame,

wood for window frame
-- -- $16.43 Home Depot

Aluminum/Copper tubing -- 1 $2.14 HobbyTown USA
JB Weld -- -- $3.47 Home Depot

Lever and Toggle Switch -- 1 of each $3.65 Elliot Electronics
 Total $67.09

